DanMaycock.com

Analytics, Strategy, and Agriculture

Tag: mining

4 Ways to Effectively Use Data In Your Job

With all the excitement around how companies are using data today, it’s hard for anyone outside of a job specifically dealing with data to know how to effectively use it for their day to day work. Yet, there isn’t a single career that isn’t impacted by the use and understanding of data, and the more effective someone becomes at harnessing and understanding data mining, the more they can impact the things that impact their professional ecosystem.

From impacting your online brand, to better tracking variables you deal with around a given task at work, knowing how to leverage data can make a big difference in any number of careers.

1. Start with a question

Before diving into a number of articles or tools regarding data, start with the question of what you’re trying to answer. It sounds basic, but you’d be surprised how often I’ve worked with people that have said data is the answer without first having the question. Figure out what are the most pressing business problems you, your boss, or your company are facing and see how data might help provide insights to answering those important need to knows.

2. Start with a small amount of data, build from there

It doesn’t take petabytes of data to answer questions, sometimes it can be a relatively small set of data to answer big questions. With all the hype around big data, sometimes it’s hard to realize that with only 100 or so records, and a pivot chart, you can get to important answers that are far more useful than what a million records could show, depending on the type of data and the question you’re looking to solve.

3. Leverage third party data that’s free

There’s a TON of data out there that’s completely free, and useful to use. US Census is a great place to start, and there are a number of sites, such as Google’s public data directory that’ll let you explore it. Furthermore, you can download the data for free and combine it with your own internal data to add greater context for things like taking your company’s store sales by zip and seeing how demographic trends within those zip codes may impact certain buying habits.

4. Learn about Data Mining 

The key to making data useful is by learning methods that allow you to tap into data, and find useful data points that can help solve the business problems you’re looking to tackle. Data mining is the practice that helps you start to uncover trends and patterns in data, and is a great discipline to begin with, whether it’s using Excel and a little bit of data or tapping into RapidMiner and starting to dive into Hadoop, Data mining spans the gambit on complexity and data quantities. Remember the first three points to keep the right context and not go overboard too soon though, and you’ll be in good shape.

Regardless of your career, there is a way data can no doubt help you professionally and impress your co workers and higher ups in the process. Start with the fundamentals, help answer important questions, and simply build from there and you’ll be a bonafide data analyst before you know it.

Why Everyone Should be a Data Miner

In thinking about the topic of data mining, a lot of different types of roles pop up in people’s minds. From data scientists typing away in giant data centers, to DBAs sitting in cubicles processing large amounts of corporate data, to an analyst building a spreadsheet for an annual report contribution.

Maybe it’s something far more physical, bringing up images of pick axes and hard hats and a big block of data (however that’s visualized, probably with 1’s and 0’s – all matrix like). Regardless of the image that comes to mind, it’s probably hard to fathom every business professional in some form or another becoming adept at data mining, and considering it a critical competency to keep in their professional toolbox in the years to come. Yet, when we explore the topic, we can easily see how data mining could become one of the preeminent skills that set folks apart in an era where it’s harder and harder to stand out from an increasingly noisy and competitive work climate. Lets start by looking at the six attributes that make up data mining (as defined by Wikipedia)

  • Anomaly detection (Outlier/change/deviation detection) – The identification of unusual data records, that might be interesting or data errors that require further investigation.
  • Association rule learning (Dependency modeling) – Searches for relationships between variables. This is sometimes referred to as market basket analysis.
  • Clustering – is the task of discovering groups and structures in the data that are in some way or another “similar”, without using known structures in the data.
  • Classification – is the task of generalizing known structure to apply to new data. For example, an e-mail program might attempt to classify an e-mail as “legitimate” or as “spam”.
  • Regression – attempts to find a function which models the data with the least error.
  • Summarization – providing a more compact representation of the data set, including visualization and report generation.

Though the definitions seem somewhat dense, think about how you’d be able to take any job – from being able to use regression analysis to construct a real estate data model to improve pricing predictions, to using summarization to build a better financial report for your senior leaders to interpret how great of a quarter you had.

Though some methods of data mining are harder than others, and you can quickly get in way over your skis without proper learning, knowing how to sift through data, and pull out the useful stuff, will give you a greater sense of the world you work in by understanding the data that matters and it’s so easy these days to learn data mining techniques online!

Just typing in “data mining classes online” produces hundreds of leads, from Coursera to MIT open courseware. Though some options go into areas like Data Science, which is much deeper level analysis, it all starts with understanding data and how best to derive meaning from it – regardless of how deep into the weeds you want to go.

This in turn gives you a big foot up against your competitors, who are largely relying on other services / people to hand them processed data and conclusions to do something with. Going from a commodity to a distinct competitive advantage means going in a direction others aren’t, and just having a nicely worded dictionary isn’t enough these days – you need to be able to turn that dictionary into a novel, and tell a story with the data that will reveal things about your business or your industry that’ll drive better decisions through unique insights.

© 2018 DanMaycock.com

Theme by Anders NorenUp ↑